
1

MASTER THESIS

MIDDLEWARE FOR INTERNET OF
THINGS

Shirin Zarghami

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS
AND COMPUTER SCIENCE
SOFTWARE ENGINEERING

EXAMINATION COMMITTEE
dr. Luís Ferreira Pires
dr. Maya Daneva
ir. A. Dercksen
ir. drs. T. Garthoff

November 2013

2

I

Abstract

 The Future Internet enables us to have an immediate access to information about the physical

world and its objects. As such, Internet of Things (IoT) has been introduced to integrate the

virtual world of information and the real world of devices. Internet of Things covers the

infrastructure, which can be hardware, software and services, to support the networking of

physical objects. IoT aims to provide a simple interaction between the physical world and the

virtual world, by integrating a large numbers of real-world physical devices (or things) into the

Internet.

IoT has increasingly gained attention in industry to interact with different types of devices. This

popularity cause a demand to use IoT vision for different types of device. While each type of

devices can support its own communication protocol and required data to provide data for each

interaction. This heterogeneous device interaction cause difficulties to interact with the devices to

gather information from the environment. The solution that has introduced in the literatures is

defining a middleware layer between the devices and the user of the IoT- based system.

In this research, we investigate on developing a middleware for an IoT-based system like video

Monitoring System (VMS), to facilitate configuration and deployment for non-expert end-users.

A VMS is responsible to provide full video coverage to monitor an area for an end-user, such as a

guard. The configuration and deployment can be facilitated by providing a homogeneous

Graphical User Interface to interact with different types of camera in a uniform way.

A VMS must support the technical details of different types of cameras. However, these

variations should be hidden from non-expert end-users. Thus, we extract a model from the

required features to configure different types of cameras. In this project, we developed a VMS

that consist of a Middleware for video Monitoring System (MVMS) and applications, which run

on top of the middleware. Our VMS let non-experts end-users configure cameras through

communicating with third-party camera service providers which is responsible to apply end-

users configuration on cameras.

To evaluate our VMS to achieve the ease of configuration and deployment for non-expert end-

users, we developed a prototype and interview with the practitioners in a company which has

developed VMS.

II

III

Acknowledgment

I believe writing this acknowledgement was the most difficult part of my master‟s thesis

since it was quite hard to write my feelings about the people I appreciate. However, we

have a saying in Persian, which is “the words that come from your heart will be fully

perceived by hearts of others for sure”. I hope it makes true for my words too since they

are really my true feelings.

First of all, I would like to thank Luis who spent quite time to change my problem

solving approach. Luis, many thanks for all of your criticisms that sometimes really made

me disappointed but without your comments and advices, I would have never known as

much as I know today.

 Maya, I‟d truly appreciate you for all your help, support, and kindness. Although, I had

your support more in the final part of my master‟s thesis, it helped me a lot to finalize it

indeed with your encouragements and positive feedback.

I also would like to thank my adorable family, who always support me in my whole life.

My wonderful parents, who really supported me both financially and emotionally during

my master‟s study abroad. Without their support, I could not have had the opportunity to

even start my studies. Shahin, my dear brother, you had an important role in my progress

during my master‟s studies. Shahin, I‟d like to thank you for walking with me, and not

instead of me. You helped me to face different challenges during my study, while you

respected my independency. My dearest sister, Soude, thanks for all of your kindness.

Although you are too busy, you never forgot me that meant a lot to me. My brother,

Shahrokh, I really appreciate your support and considerations.

Furthermore, I‟d like to thank all my friends. Alireza and Zahra, many thanks for your

support and help to find useful references in my research. Arefeh, thanks for your favor

to review my thesis report. Martijn, thanks for listening patiently to my words and

making me calm when I was tired or angry. Mohammad, thanks for sharing your

experience with me in order to improve my report.

Last but not Least, I‟m thankful to my colleagues at Nedap, especially Albert, Tim and

Erik. Albert, thanks for respecting my curiosity about the company‟s system and

motivating me to work hard. You and Tim always answered to my questions patiently.

Erik, I‟d like to thanks you for sharing your experiences with me. I learned a lot about

software architecture from you.

IV

1

Table of Contents

Abstract .. I

Acknowledgment .. III

Chapter 1 Introduction ... 3

1.1 Background .. 3

1.2 Motivation ... 3

1.3 Objective and Research Questions .. 4

1.4 Empirical Research Approach .. 5

1.5 Structure .. 6

Chapter 2 Background for this research .. 7

2.1. IoT definition .. 7

2.2 Challenges.. 9

2.3 IoT_based Middleware .. 10

2.3.1 Interface protocols ... 11

2.3.2 Device Abstraction (DA) ... 12

2.3.3 Central control, Context detection & Management (CCM) ... 14

2.3.4 Application Abstraction .. 14

2.4 Conclusion ... 15

Chapter 3 Review of IoT-based Middleware ... 17

3.1 AURA .. 18

3.2 HYDRA ... 20

3.3. TinyDB ... 21

3.4 WISeMid ... 22

3.4.1 WISeMid power saving mechanisms ... 23

3.4.2 WISeMid architecture .. 24

3.4.3 WIOP protocol.. 26

3.5 Comparative Analysis of the Middleware ... 28

3.6 Conclusion ... 29

Chapter 4 Video Monitoring System Requirements ... 31

4.1 VMS High-level Architecture ... 31

2

4.2 Requirements Capturing Approach ... 32

4.3 Functional requirements ... 33

4.4 Non-functional requirements .. 37

4.5 Conclusion ... 38

Chapter 5 Proposed architecture .. 39

5.1 Overview of the system ... 39

5.2 APIs .. 42

5.3 Registry .. 44

5.3.1 Resource configuration ... 44

5.3.2 Services repository ... 46

5.3 Service proxy ... 49

5.4 Conclusion ... 49

Chapter 6 Implementation .. 51

6.1 Deployment ... 51

6.2 Client Application .. 52

6.3 Registry .. 55

6.4 Service proxy ... 57

6.5 Conclusion ... 60

Chapter 7 Preliminary Evaluation .. 61

7.1 Evaluation process ... 61

7.2 The experiment and its results .. 63

7.3 Discussion: ... 66

7.4 Validity Threats .. 67

7.5 Conclusion ... 68

Chapter 8 Conclusion .. 69

8.1 Contributions ... 69

8.2 Future Research ... 70

References ... 73

Appendix A: Questionnaire sample ... 77

Appendix B: Questionnaire Results ... 79

3

Chapter 1 Introduction

The structure of this chapter is the following: Section 1.1 defines the motivation for this

work. Section 1.2 shows the research objectives and questions. Section 1.3 presents the

steps required to achieve our objectives. Section 1.4 shows the structure of the report.

1.1 Background

The Future Internet goal is to provide an infrastructure to have an immediate access to

information about the physical world and its objects. Physical objects can be applicable to

different application domains, such as e-health, warehouse management, etc. Each

application domain may have different types of physical devices. Each physical device

can have its own specifications, which is required to use in order to interact with it. To

achieve the future Internet goal, a layered vision is required that can facilitate data access.

Internet of Things (IoT) is a vision that aims to integrate the virtual world of information

to the real world of devices through a layered architecture.

The term „Internet of Things‟ consists of two words, namely Internet and Things. Internet

refers to the global network infrastructure with scalable, configurable capabilities based

on interoperable and standard communication protocols. Things are physical objects or

devices, or virtual objects, devices or information, which have identities, physical

attributes and virtual personalities, and use intelligent interfaces [1]. For instance, a

virtual object can represent an abstract unit of sensor nodes that contains metadata to

identify and discover its corresponding sensor nodes. Therefore, IoT refers to the things

that can provide information from the physical environment through the Internet.

Middleware is as an interface between the hardware layer and the application layer,

which is responsible for interacting with devices and information management [2]. The

role of a middleware is to present a unified programming model to interact with devices.

A middleware is in charge of masking the heterogeneity and distribution problems that

we face when interacting with devices [3].

1.2 Motivation

IoT-based system is in charge of providing knowledge from an environment to an non-

expert user. IoT-based system can be used in different environments, so it needs to be

able to address many heterogeneous devices. Thus, a major concern within developing an

IoT-based system is how to handle the interaction with the heterogeneous devices for

non-expert users. This concern can be addressed by a middleware layer between devices

and non-expert users. This layer is responsible to hide the diversity of devices from the

user perspective, and provides access transparency to the devices for the end users.

4

The idea of creating abstractions of devices been addressed in the literature. The

middleware we found in the literature can provide satisfaction by facilitating the

interaction with devices, but they do not support low-level device configuration [4].

1.3 Objective and Research Questions

In this research, we work toward an architecture for a middleware for IoT-based systems,

based on [5], which provides a simple and flexible interface to interact and configure

different devices. This middleware allows users to completely control physical devices by

masking their heterogeneity. We work on the Video Monitoring System (VMS), to

develop a middleware with an uniform interface to interact with different types of camera

devices.

A video Monitoring System (VMS) is in charge of providing full video coverage to

monitor an area for an end-user, such as a guard. Since different types of camera can be

connected to a VMS, an end-user needs to know how to configure each of them. This can

cause some difficulties for end-user to configure the cameras. To facilitate camera

configuration, we need to have an abstract layer on top of the cameras. This layer provide

a unique way for end-users to configure any types of cameras.

The main research objective of this thesis is:

To develop a middleware for an IoT-based system like VMS, to facilitate configuration

and deployment for non-expert end-users.

The term “facilitate configuration and deployment for non-expert end-users” have been

defined by Henricksen, K. et. al [6] as “The distributed hardware and software

components of a context deployment aware system must be easily deployed and

configured to meet user and environmental requirements, potentially by non-experts”

To achieve this goal, we will define a generic model of the data required to configure and

interact with different camera devices. Toward this and in this research, the following

research questions will be addressed:

Q1. What is the role of middleware in an IoT-based system?

Q2. What are the main functional components of a middleware in an IoT- based system?

5

Q3. How to facilitate the interaction of non-expert users with different types of devices?

Q4. How to verify ease of this interactions with different types of devices ?

In this work we answer these questions for the special case of Video Monitoring System

(VMS)

1.4 Empirical Research Approach

To achieve the main objective of this research and answer the research questions, the

following research process has been taken (Figure 1.1):

1. Study the literature about IoT-based system definition and challenges.

2. Interviews practitioners of a company that develops IoT-based systems to identify their

requirements on the middleware for these systems.

3. Design and implement a middleware for VMS, which accomplish with the both

functional and non-functional requirements that have been identified.

4. Test the middleware of a case study in which a prototype application has been

built as support a usage scenario.

5. Interview with the practitioners in the company, and analyzing its results. In order

to evaluate if the middleware can meet the defined objective.

Figure 1.1 Research approach

6

The research approach has been inspired by the design science method of Hevner

[7]

1.5 Structure

The remainder of this thesis is structured as follows:

Chapter 2 gives the background of our work. We explain IoT vision and discuss the

functionalities that a middleware for an IoT-based system should support.

Chapter 3 reviews some middleware for IoT- based systems and discusses their

features.

Chapter 4 reports of both functional and non-functional requirements that our

middleware should address. We extract these requirements based on reviewing the

literature and the result of interviews, which we performed with practitioners in a

commercial company

Chapter 5 proposes middleware architecture to support most of the requirements

identified in Chapter 4.

Chapter 6 reports implementations of a prototype of a middleware for VMS.

Chapter 7 evaluates our middleware with respect to ease of configuration and

deployment for non-expert end-users.

Chapter 8 provides answer to the research questions of this thesis, the key

conclusions and the recommendations for the further research.

7

Chapter 2 Background for this research

In this chapter, we explain the IoT definition and the challenges to develop an IoT-based

system that are independent from the application domain. One of the main challenges to

develop an IoT-based system is developing a middleware between the user of the system

and heterogeneous devices in the system in a homogeneous way. Therefore, we identify

the required functional components to develop a middleware for an IoT system. We

called all the system that fit into IoT definition as an IoT-based system.

This chapter is structured as follows: Section 2.1 introduces IoT by explaining the IoT

layered architecture. Section 2.1 briefly explains the developing of a IoT-based systems.

Section 2.3 explains the required functional components to develop a middleware for an

IoT-based system.

2.1. IoT definition

 In this section, we explain some of the IoT definitions. Also, we explain the layered

architecture for IoT.

Internet of Things (IoT) has increasingly gained attention in industry to interact with

different types of devices. IoT can have influence on industry and society by integrating

physical devices into information networks [8]. IoT impacts can be on different

perspectives, namely for private and business users. From the perspective of a private

user, IoT has effect on both working and personal fields, such as smart homes and offices,

e-health and assisted living. From the aspect of a business user the impacts would be in

fields such as automation and industrial manufacturing, logistics, business process

management, intelligent transportation of people and goods [9]

IoT integrates physical things into information networks. IoT covers the overall

infrastructure, including software, hardware and services, which is used to support these

information networks. The integrated physical things can exchange data about the

physical properties and information that they sense in their environment. To identify

devices, we can use identification technologies like for example RFID, which allow each

device be uniquely identified [10].

International Telecommunication Union (ITU)
1
 defines IoT as “A global infrastructure

for the Information Society, enabling advanced services by interconnecting (physical and

virtual) things based on, existing and evolving, interoperable information and

communication technologies”[11]

1
 http://www.itu.int

2
 http://www.iot-a.eu/

8

Internet of Things-Architecture
2

(IoT-A) defines it as “The idea of a globally

interconnected continuum of devices, objects and things in general emerged with the

RFID technology, and this concept has considerably been extended to the current vision

that envisages a plethora of heterogeneous objects interacting with the physical

environment.”[12]

IoT has a layered architecture designed to answer the demands of various industries,

enterprises and society. Fig. 2.1 shows a generic layered architecture for IoT that consist

of five layers, which are discussed, in the following:[13]

 Edge Technology layer

This is a hardware layer that consists of embedded systems, RFID tags, sensor

networks and all of the other sensors in different forms. This hardware layer can

perform several functions, such as collecting information from a system or an

environment, processing information and supporting communication.

 Access Gateway layer

This layer is concerned with data handling, and is responsible for publishing and

subscribing the services that are provided by the Things, message routing, and

hovelling the communication between platforms.

 Middleware layer

This layer has some critical functionalities, such as aggregating and filtering the

received data from the hardware devices, performing information discovery and

providing access control to the devices for applications.

 Application layer

This layer is responsible for delivering various application services. These

services are provided through the middleware layer to different applications and

users in IoT-based systems. The application services can be used in different

industries such as, logistics, retail, healthcare, etc.

2
 http://www.iot-a.eu/

9

Figure 2-1 Layered architecture of the Internet of Things (IoT).

2.2 Challenges

IoT-based systems can be used for different purposes and areas, so that, we have to face

different challenges. In this section, we explain some of the challenges that need to be

considered in research activities [10]:

 Edge technology

 At the hardware level, more research efforts are required to develop the

technology of embedded devices, sensors, actuators and (passive and active)

identification, since an IoT-based system must be able to gather sufficient

information about the real world by employing a large variety of devices and

environments. Thus, there more work is still required to connect heterogeneous

devices and deploy them in IoT applications, and to provide support for new

devices.

 Networking technologies

In IoT, things are connected through different kinds of networks, i.e. mobile,

wired and wireless network. These networks support bi-directional

communication at different levels among the real world objects, applications and

10

services that are employed by the IoT applications. This highly distributed

structure should provide interconnection with low energy consumption, while

distributed data can cause privacy issues.

 Middleware system

In IoT, we have heterogeneous devices and networks. Their heterogeneity can

potentially increase with new technologies. To facilitate the use of these devices

by IoT applications, we should shield their heterogeneity. Therefore, we need to

develop a secure, scalable and semantically enriched service-oriented middleware

to cope with the heterogeneity of devices.

 Platform services

They support a superior management of all involved devices in an integrated way,

ensuring scalability, high availability, and the safe and secure execution of the

requested functionality from devices.

 In continue, we focus on the middleware challenges, because we are looking for the

functionalities that a middleware can provide for the application layer in the IoT-based

systems.

2.3 IoT_based Middleware

Bandyopadhyay, S. et. al. have studied the middleware systems that have been applied in

IoT-based systems [1]. They classify the required functionality of middleware to manage

interaction with a variety of devices in four functional components, namely (1) interface

protocols, (2) device abstraction, (3) central control, context detection & management,

and (4) application abstraction (shown in Fig. 2.2). In the following, we explain these

components in details.

11

Figure 2.2 Functional components of a middleware for IoT-based systems

2.3.1 Interface protocols

This component is in charge of providing technical interoperability. Interoperability in

the context of Interface protocols means: the ability of two systems to interoperate by

using the same communication protocols. According to ETSI (European

Telecommunications Standards Institute) [14] technical interoperability is defined as the

association of hardware or software components, systems and platforms that enable

machine-to-machine communication to take place. This kind of interoperability is often

centered on (communication) protocols and the infrastructure needed for those protocols

to operate[14].

The Interface Protocol component defines protocols for exchanging information among

different networks that may work based on different communication protocols, in order to

12

allow technical interoperability. This component is responsible for handling basic

connectivity in the physical and data link, network, transport, and sometimes the

application layer of the TCP/IP stack.

To cope with the heterogeneity of devices, we can use a wrapper for each device to

translate the protocol supported by the device to a common protocol. This wrapper can be

placed either on the device side or the middleware side. If we want to have direct

interaction with devices, we should place the wrapper in the middleware side. Devices

usually have limited capability of computational process, so this would be a reason to

implement wrapper on the middleware side. In contrast, in case of indirect interaction

with devices we can develop an intermediary wrapper between the middleware and the

devices. The interface protocol component is responsible to allow the middleware to

support both direct and indirect interactions.

2.3.2 Device Abstraction (DA)

This component is responsible for providing an abstract format to facilitate the interaction

of the application components with devices. This abstraction provides syntactic and

semantic interoperability, which are defined by ETSI [14] as follows:

 Syntactic interoperability is associated with data formats. The messages

transferred by communication protocols must have a well-defined syntax and

encoding format, which can be represented by using high-level transfer syntaxes

such as, HTML and XML.

 Semantic interoperability is usually associated with the meaning of the content of

message which is understandable for human. Thus, interoperability on this level

means that there is a common understanding among people on the meaning of the

content (information) being exchanged among them. However, since DA does not

communicate directly with human, semantic interoperability in the context of DA

is in charge of providing this common understanding for applications.

Semantic interoperability relies on semantic models which tends to be domain

specific. For example, one way to provide semantic interoperability in Service

Oriented (SOA) [15] based middleware is by using Devices Profile for Web

Services (DPWS) [16] . In this context, each device type refers to a distinguished

service type

DA component provide two general functionalities: (1) to ask devices to perform

some functionality and (2) to define and configure devices DPWS uses the XML

format that is shown in Code 2.1.

13

Code 2.1 XML code to define a device

We explain the tags used in the XML of Code 2.1 as follows:

 dpws:ThisModel/ dpws:Manufacturer

It defines the name of the device manufacturer.

 dpws:ThisModel/ dpws:ManufacturerUrl
It defines the web site of the manufacturer of the device.

 dpws:ThisModel/ dpws:ModelName
It defines the user-friendly name of this model of device as assigned by

the manufacturer.

 dpws:ThisModel/ dpws:ModelNumber

It defines the model number of this model of device.

 dpws:ThisModel/ dpws:ModelUrl
It defines a URL of a web page where this model of device is described.

14

 dpws:ThisModel/ dpws:PresentationUrl
It defines the URL of a presentation resource for this device. It correspond

to the URI address from which the metadata of the resource can be

retrieved. If Presentation URL is specified, the device can have the

resource in multiple formats, but it must at least provide an HTML page.

2.3.3 Central control, Context detection & Management (CCM)

Context characterizes the situation of an entity, which can be a place, a person or an

object that is relevant to the user, applications and their interactions [1]. The CCM

functional component is responsible to support context-aware computation that is a

computational style that take to account the context of the entities that interact with the

system. A middleware for IoT-based systems must be context-aware to work in smart

environments [1]. Smart environments refer to a physical world that is richly and

invisibly interwoven with sensors, actuators, displays, and computational elements,

embedded seamlessly in the everyday objects of our lives, and connected through a

continuous network [17]. Context-awareness includes two functionalities:

1) Context detection, which consists of collecting data from resources, and

selecting the information that can have an impact on the computation.

2) Context processing, to use the gathered information to perform a task or make

a decision.

2.3.4 Application Abstraction

This functional component provides an interface for both high-level applications and end-

users to interact with devices. For instance, this interface can be a RESTful interface or

can be implemented with some query-based language.

A. Malatras. et. al. propose a SOA-based middleware to perform data management and

data monitoring services [18]. This middleware uses a RESTful interface to facilitate the

interaction of high-level applications with sensors, which can communicate with Wireless

Sensor Network (WSN) through the HTTP operations: (1) GET to issue a query on an

existing resource, (2) DELETE to remove an existing resource, (3) POST to create a new

resource, and (4) PUT to update an existing resource. For instance, a client application

gets the result of a domain task by sending a GET request through the URL: „http ://{

hostname}/REST/ {version}/DomaintaskResult/id’. In this URI that reference to

an „id‟ leads to a unique result.

In the TinyDB middleware [19], an end-user can use a query language to interact with

devices. For instance, a user can send the following query to get the id of a sensor

15

(nodeid) nearby and temperatures that are sensed by this sensor during the past 10

seconds before executing the query:

SELECT nodeid, temp
FROM sensors
SAMPLE PERIOD 1s FOR 10s

2.4 Conclusion

In this chapter, we defined IoT and identified common IoT layers. Furthermore, we

discussed a reference middleware architecture for IoT-based systems. This

architecture has been proposed by Bandyopadhyay, S. et. al based on a study on the

existing middleware frameworks for IoT-based systems [1].

16

17

Chapter 3 Review of IoT-based Middleware

The term Internet of Things (IoT) refers to a wide set of applications and research areas

such as, distributed computing and knowledge management. Much of the IoT research we

found in the literature is related to the field of pervasive computing. World Wide Web

Consortium (W3C)
3
 defines pervasive computing as a vision about our future computing

life style. In this vision, computer systems will be seamlessly integrated into our everyday

life, anticipating our needs and providing relevant services and information for us in an

anytime-and-any-where fashion. Pervasive Computing is all about making the human's

life easier by exploiting the available computing technologies [20]. This motivates

scientists to develop new technologies for the everyday people‟s lives.

Since the vision of IoT is almost similar to Pervasive computing, we reviewed the

literatures that address both IoT and Pervasive systems. To select the middleware to

discuss we had the following approaches:

1) We looked at typical IoT middleware such as ISMP [21], ASPIRE [22] GSN [23].

We selected HYDRA [24] to review, because it is the most popular and well-

documented middleware in comparer to the mentioned middleware. Also, based

on the study of Bandyopadhyay, S. et. al [3], those middleware does not support

the discussed functional components in Chapter 3, while HYDRA supports them.

2) We looked at typical Pervasive system middleware such as [25], [26], [27]. We

selected the following middleware to review:

 AURA [28] because this middleware focus on elaboration and

manipulation of the gathered data from devices. we aim to provide ease of

configuration and deployment for end user and developer. Since to meet

this goal, we require to facilitate the gathered data manipulation, we

reviewed AURA that was the only middleware among the reviewed paper

that considered the data manipulation.

 TinyDB [19] focus on gathering data from devices. Since in an IoT-based

system we need to gather data from environment through different

devices, we reviewed TinyDB that is a popular middleware.

 WiseMID [29] is the only middleware among the reviewed middleware

that is specific for energy saving purpose. As saving the energy of devices

is important issue, we reviewed this middleware.

In this chapter, we the mentioned middleware in more detail. Also, we analyze the

discussed middleware with respect to the functional components mentioned in Chapter 2.

3
 http://www.w3.org/

18

3.1 AURA

One of our objectives in this assignment is to find the possibility of improving the ease of

configurations and deployment in an IoT-based system. AURA [28] aims to provide

high-level APIs to interact with each device, which can facilitate device configurations

for end-users. AURA middleware‟s aim is relevant to our objectives, so we review its

architecture.

AURA is a middleware that supports interacting with complex devices (e.g. digital

cameras, PDAs, etc.), and their integration. AURA defines a proxy, called personal

AURA that enables users to use a device independent of their physical locations. Figure

3.1 shows the main components of the AURA framework architecture and their

interactions.

Figure 3.1 The components of the AURA framework architecture and their interactions.

 We explain the four main components of AURA, in the following:

1. Task Manager (Prism)

This component aims to provide the minimum distraction for end-users in case

any change happens in the system environment, such as changing the end-user‟s

location or the operating system. This component provides a platform-

independent description for end-users‟ tasks, such as play video and edits text,

which is an abstract service. The service abstraction allows an end-user to request

for execution of a task in the same way in different platforms. For instance, to

provide the edit text task for an end-user in the UNIX environment, AURA can

use Emacs while, in Windows environment AURA can use Microsoft Word.

19

2. Service Supplier (SS)

This component implements the services by composing task(s) to answer to an

end-user‟s request. This component is similar to a wrapper that maps the abstract

service descriptions to application-specific settings. For example, text editor can

map the editing request from user to Notepad, Emacs or Microsoft word.

3. Context Observer (CO)

This component gathers information about the physical context and accordingly

triggers an event for the Environment Manager and Task Manager. The

information is about end-users‟ location, activity, authentication, etc. Context

observer can support different degrees of complexity according to devices of

different types deployed in different environments. If a device has the capability

of sensing more features, the CO component can become more complex.

4. Environment Manager (EM)

This component is a gateway to the environment. It knows which available

suppliers provide which services, and where services can be deployed. Also, in

case of asking a file by end-user, the EM component supports different ways to

access to the file, such as foe example using FTP. To facilitate file access for

users, this component encapsulates the detailed information about accessing a file

in a distributed environment.

By changing the location of the end-user of a Task Manager, the deployment of the

supplier in the new location can be changed. For instance, imagine a user stops working

on a file with a text editor on a desktop computer and wants to work on the file through

an Ipad, the system is responsible to handle this changes. AURA uses four connectors to

hide details of distribution and heterogeneity of service suppliers, as the following:

1. Connector between Prism and an arbitrary Supplier.

2. Connector between the Context Observer and the Environment Manager.

3. Connector between Prism and the Environment Manager.

4. Connector between the Context Observer and Prism.

Each of these connectors uses a special protocol based on the component types to which

they connect. Each of them may have many implementations to support specific low-

level interaction mechanism.

20

3.2 HYDRA

Hydra [24] is a well-known middleware framework for IoT-based system This

middleware covers almost all the functional components discussed in Chapter 3. To

provide the ease of deployment and configuration, we are looking for a Service Oriented

Architecture that interacts with devices in a loosely couple way. The reason is, a loosely

couple IoT-based system can support better system maintainability and extendibility in

case of handling changes in the type an number of devices. As Hydra is a SOA-based

middleware, and supports many required functionalities to support an IoT-based system,

we consider it as our related work,

This project was developed for three application domains, namely building automation,

healthcare, and agriculture scenarios [30]. Hydra middleware is intelligent software that

is placed between applications and the operating system to handle various tasks in a cost-

efficient way. This middleware provides a web service interface to interact with any

physical devices, actuators, sensors or subsystems, irrespective of their network interface

technologies, e.g. Bluetooth, RF, ZigBee, RFID, WiFi, etc.

This middleware has been designed to facilitate the interaction with devices by

abstracting from the detailed information about these devices and their networks. Hydra

considers each device as a service, and uses ontology languages, e.g. OWL, OWL-s and

SAWSDL, to define semantic descriptions of these devices. Moreover, it provides an

intelligent service layer that allows end-users to interact with these devices without

dealing with the communication technology that is supported by the devices.

Figure 3.2 shows the components of Hydra architecture and the components that Hydra

middleware communicates with.

21

Figure 3.2 Components inside and outside of Hydra middleware.

3.3. TinyDB

TinyDB[19] middleware was the first project to propose the idea of abstracting from

devices. TinyDB allows end-users to interact with devices without knowing about the

details of the devices specification, such as the communication protocols that are

supported by these devices. Since we are looking for a way to abstract from details of

devices to facilitate interactions with them, this topic can be relevant to our work.

TinyDB provides a Domain Specific Language (DSL) for end-users to interact with

devices. Its DSL is a query language that supports selection, join, projection, and

aggregation to work with an embedded sensing environment. This DSL allows an end-

user to get information about the time, place, type and method of sampling in an

embedded sensing environment. TinyDB supports the following types of queries:

22

 Monitoring Queries

It asks the value of one or more attributes periodically and continuously, such as,

e.g., reporting the temperature of a warehouse every hour.

 Network Health Queries

It provides information about the network itself. For instance, selecting

neighboring nodes, with a battery lifetime larger than a threshold.

 Exploratory Query

It shows the status of a specific node or a set of nodes at a specific time, such as,

e.g., selecting the temperature of the sensor with same specific id.

 Actuation Query

This kind of query can be used to ask for a physical action. For instance, an end-

user of a system wants to turn off a fan in a room when the temperature of the

room is lower than a threshold. A query to perform this has the following format:

SELECT nodeid,temp FROM sensors WHERE temp < thresholds

 OUTPUT ACTION power-off (node-id)

 SAMPLE PERIOD 12s

 The OUTPUT ACTION clause defines the external command that is invoked in

response to the asked query.

3.4 WISeMid

WISeMid [29] is an energy-aware middleware for integrating wireless sensor networks

and Internet. In an IoT-based system, saving energy in interaction among devices is

important, because they usually have limited power suppliers. Also, IoT-based system is

IP-based communication. Therefore, as the WISeMid middleware considers both IP-

based communication and energy awareness factors, we review this middleware.

23

3.4.1 WISeMid power saving mechanisms

WISeMid focus on integrating the Internet and WSNs at the application level. This

middleware proposed several power saving mechanisms, as the following:

 Aggregation service

The goal of the data aggregation service is to aggregate correlated or redundant data,

and reduce the overall size of transferred data in a network. In this way, we can

decrease the network traffic and save energy by decreasing the interactions with

devices. In this service, a user sends one request and receives an answer based on an

aggregation of the last values of the requested devices. In this way the number of

transaction decreases and energy can be saved.

 Reply Storage Timeout

This service stops sending the same messages with the same parameters. For

instance, if the sensed data of a device is fixed for a specific period of time, we

can send only one request to the considered device, and then use the reply

message to answer to all of the equivalent request messages arriving during that

specific period. Therefore, WISeMid prevents the system from getting

information from sensors when the data is still up-to-date.

 Atomic Type Conversion

This service decreases the size of messages in an IoT-based system. For instance,

if we define an integer data type for a field that gets a numeric value like „1‟ in

this case, we many bytes are unnecessarily used. To save bytes, the argument

format can convert from Integer to Short. Thus, WISeMid removes unnecessary

bytes from messages.

 Invocation asynchrony patterns

This service provides four patterns to handle the end-user requests in an

asynchronous way. These patterns prevent the system waste time with blocking,

when requests can be handled in an asynchronous way. These patterns are as the

following:

24

1) Fire and forget

This pattern supports one-way operations, which have no return values or

exception errors. This pattern cannot report any errors to the end-user when an

error occurs either when sending the invocation to the remote service, or during

the execution of the remote invocation.

2) Sync with Server

 This pattern is used when we want to be sure that the request has been received

by the server, even if a request has no exception or returned value. In this case,

the service invokes a service provider, and then waits for an acknowledgment

message from the service provider. We can use this pattern in case a service

should be invoked before other services.

3) Poll object

This pattern is based on request and response operations. It checks if an

asynchronous response has arrived, and if so, it receives the return value.

4) Result callback

This pattern can trigger an event in end-user side whenever the requested result

becomes available.

3.4.2 WISeMid architecture

WISeMid uses a Interface Definition Language (IDL) [29], to describe a service in this

middleware. IDL is a unified language to describe a service irrespective of where

(Internet or WSN) or what implementation language is used. The IDL contains a module

(package) that is as a container for specifying service interfaces. Each service interface

includes name and the operation that can by supported by the service. Each operation

contains input/output parameters types and may raise exceptions. Its format is the

following:

25

Package{
 Service interface name{
 Operations{
 Input/ output parameters type
exceptions

}
}

}
Figure 3.3 shows WISeMid architecture, which has three layers, as the following:

1) Common services layer

This layer contains general services, which are not for particular or a specific

application domain. It includes the following services:

 Aggregation of sensors data.

 Grouping to define clusters in a WSN.

 Naming to store the required information to access a service.

2) Distribution layer

This layer defines the required components to use a service. For instance,

Requestor is a component that makes a remote invocation with parameters, such

as, e.g. remote service location, service name and arguments on the client side;

WISeMid uses WISeMid Inter-ORB Protocol (WIOP) to perform

Request/Response interactions. We explain WIOP in Section 3.4.3.

3) Infrastructure layer

This layer consists of the Server Request Handler and the Client Request Handler.

These handlers provide network communication to interact with devices.

26

Figure 3.3 shows WISeMid architecture

3.4.3 WIOP protocol

The WIOP protocol defines a format for request or response messages between clients

and servers. Each message consists of a header and a body part. There are two versions of

WIOP:

1) WIOPi supports communication through Internet.

2) WIOPs support communication in a Wireless Sensor Network (WSN).

Figure 3.4 shows WIOP header has three fields. The msgtype field indicates whether a

message is a Request or a Response.

Figure 3.4 WIOP message headers

27

WIOP body can consist of Request or Reply messages with their own body and header.

 Request message body

Figure 3.5 shows the WIOP request message body. The fields in the red are used only in

the WIOPs version, and the rest of the fields are common between both WIOP versions.

The Resp field indicates whether a request expects a response or not. By defining five

operations, we can have access or use a service and register a service in the WISeMID

Naming service. The operations defined in the opr field are listed, bellow:

1) Bind to register a service by its name and associate it with a name.

2) Lookup to return the reference associated with a service name.

3) Rebind to change the reference that is associated with a service.

4) Unbind to unregister a service name.

5) List to register all the registered services.

Figure 3.5 WIOP Request message body

 Reply message body

Figure 3.6 shows the reply message body, in which the fields in red are for

WIOPs version and the rest are for both versions. To indicate the reply address

refers to which request, we can use the Req.id field. Reply status indicates if any

exceptions have happened.

Figure 3.6 WIOP reply message

28

3.5 Comparative Analysis of the Middleware

In this section, we compare and contrast the four reviewed middleware with each other.

Table 3.1 shows the summery of this comparison based on the functional components,

which we discussed in Chapter 3.

Table 3.1 Functional components supported by each middleware

AURA can change its configuration automatically when user tasks or the environment

changes. Furthermore, AURA has been designed to provide a platform-independent

description of the user‟s tasks that allows the user to use different applications in different

locations without changing the configuration. However, the technical details to interact

with physical devices are out of the scope of the AURA project. Thus, AURA should not

support the ease of deployment in terms of abstracting the format of required data to

interact with devices.

Hydra makes an abstraction over devices so an end-user does not need to know the

detailed information to configure the devices. Moreover, Hydra ease the deployment

process by providing an interface to interact with the considered devices as service

providers at deployment time. For devices that do not have a sufficient computing power

to be a service provider, Hydra uses a proxy that allows these devices to interact with the

Hydra middleware through the IP protocol.

Hydra interacts with devices through a SOAP-based API. Yaza. D .et. al [31] believe that

RESTful architecture performs better in wireless sensor nodes with limited resources.

29

Also, based on the research of Guinard. D.et. al [32] RESTful architecture is more

intuitive, flexible, and lightweight in compare with the SOAP-based web services. Since

in an IoT-based system we interact with many devices with limited computational

process capability, we think developing a middleware by using RESTful web service may

be more suitable than SOAP-based web service.

TinyDB is defined to be used together with TinyOS, which is a software suite. It is

designed to facilitate the access to the lowest level of hardware in an energy efficient

way. TinyDB only supports TinyOS-based devices. Therefore, service deploying in

TinyDB depends on the operating system that is supported by the required devices. The

end-user needs to know the device specifications before working with devices in

TinyDB.

WISeMid focuses on integrating the Internet and wireless sensor network at service level

by providing transparency of access. Location and technology. By providing these

transparencies, this middleware can provide ease of deploying, because we do not need to

have the detail information such as address of sensors to deploy a service.

3.6 Conclusion

In this chapter, we reviewed four middleware for IoT-based systems. To satisfy

application requirements and provide ease of configuration and deployment for an IoT-

based system, middleware requires having a uniform way to communicate with different

service providers (e.g. devices). Furthermore, middleware should support device

abstraction to provide semantic interoperability between the system parts. In the

following we discuss the ease of configuration and deployment of the reviewed

middleware.

30

31

Chapter 4 Video Monitoring System Requirements

In this chapter, we explain the functional and non-functional requirements of the Video

Monitoring System (VMS). We defined these requirements based on the literature and

interviews with practitioners. This chapter is structured as follows: Section 4.1 briefly

defines a VMS. Section 4.2 describes the methodology used to identify the requirements

of the VMS which we have designed and implemented. Section 4.3 explains the VMS

functional requirements. Section 4.4 discusses the VMS non-functional requirements.

4.1 VMS High-level Architecture

A VMS communicates through third-party camera service providers with cameras to

provide video streams for monitoring a location. A VMS must support the technical

details of different types of cameras. However, these variations should be hidden from

non-expert end-users. Thus these users should be able to interact with different types of

camera in a homogeneous way. Therefore, we developed a VMS that consist of a

Middleware for video Monitoring System (MVMS) and applications, which run on top of

the middleware to interact with three external entities of the VMS, namely third-party

camera service provider, admin-user and guard. VMS is in charge of facilitating the

interaction between guards and different types of camera devices. MVMS provides a set

of APIs to hide the technical details to interact with different cameras.

We developed a VMS as an IoT-based system because an IoT-based system integrates

physical things, such as cameras, into an information network through the Internet to

exchange the information that they sense in their environment. VMS handles cameras,

which provide video streams from different locations. These cameras are normally

connected to the VMS through the Internet.

Our VMS has to interact with third-party camera service providers, which are responsible

to interact directly with cameras to retrieve their required information. These camera

service providers receive the technical information to configure the cameras, but they

hide the detailed information about how to communicate with different types of camera.

Thus, camera service providers give some general technical details to configure the

cameras from the end-users to handle streaming.

Furthermore, our VMS has to interact with two sorts of users, who can issue queries to

manipulate the data provided by the cameras or configure them, (Ι) The user who can

only ask to monitor a video-service, called an guard. Video-service refers to one or more

camera (s) which provides a full video coverage from the required area for the guard. (ΙΙ)

The user who can configure the cameras through a high level service, called an admin-

32

user. Figure 4.1 shows the boundary of the VMS by presenting the VMS internal and its

operational environment.

Application 1 Application 2

Application 3

MVMS

3rd party camera service provider

VMS

Admin-user Guard

Figure 4.1 High-level architecture of a VMS

The VMS non-functional requirements affected the design of our MVMS. In this chapter,

we discuss the requirements which were identified by interviewing of practitioners

(mainly functional requirements), and by consulting the literature on IoT-based systems

(mainly non-functional requirements).

4.2 Requirements Capturing Approach

Our approach to capture the VMS requirements consists of two parts:

1) Practitioners interviews

To find out the requirements of the admin-user and guard, we had interviews with a

number of technical staff in a commercial company (Nedap
4
), who answered our

4
 http://www.nedap.com/

http://www.nedap.com/

33

questionnaires on behalf of the admin-users and guards in the system. The company

develops a security management platform in order to provide security in different

domains, such as airports, companies. One of the services of this platform is current

VMS, which aims to support security by providing video streams to monitor different

locations. Since the security management platform has been used by many companies, it

is fair to assume that the technical staff of the company who have developed current

VMS, have sufficient knowledge about the VMS requirements. Therefore, interviews with

the technical staff at Nedap should yield a clear understanding of the VMS functional

requirements.

For capturing both functional and non-functional requirements of third-party camera

service providers, we interviewed the developers of an interface to handle the interactions

with the third-party camera service providers. Furthermore, we reviewed the RESTful

API that is provided by a third-party camera service provider to facilitate the interactions

with its cameras.

During the types of interviews, we also asked open-ended questions regarding the non-

functional requirements, such as, for example, the acceptable application response time.

After conducting the interviews, we first described a use case diagram that represents the

required VMS functionalities. Then, we provided a sequence diagram for this use case to

show how the application service providers, the third-party camera service provider, and

the VMS have to interact in order to deploy a video service.

2) Reviewing the related literature

In addition to the our interviews, we reviewed the related work ([13], [33], [34], [1]) on

IoT-based middleware to identify more non-functional requirements. Section 4.4

describes some of the non-functional requirements, which fall in the scope of our

middleware in an IoT-based system.

4.3 Functional requirements

The VMS functional requirements were identified by interviewing the practitioners in a

company, and with respect to our VMS scenarios. We defined a use case and a sequence

diagram to represent the VMS functional requirements. VMS has three external entities

who communicate with the system: (1) admin-user, (2) guard and (3) third-party camera

service provider.

The main functional requirement of the system is to provide the video monitoring

service. For this purpose, Figure 4.2 shows the use cases (1) monitoring a video service,

(2) configuring the camera, (3) deploying a camera configuration, (3) reporting about

the resources (4) configuring the video service. To provide each functionality, several

external entities should interact with each other. The functionalities and the involved

external entities are:

34

Figure 4.2 VMS functionalities and involved external entities

1. Monitoring a video service

This use case defines as a service that can be asked by guard. A guard sends a

monitoring request to monitor a video service. VMS extracts the address of the

third-party camera service providers that manage the cameras in the video service.

Then, VMS sends the monitoring request and the address of the guard to the

considered third-party camera service providers. Finally, the third-party camera

service provider starts up the requested video stream to the guard. Later, the guard

can send a request to the third-party camera service provider through the VMS to

stop the video stream.

2. Configuring the camera

This use case addresses the required camera configurations. Our VMS supports the

capability of saving more than one configuration for each camera. Only one of

these configurations can be applied on the cameras. Each configuration address the

required camera configuration fields to prepare a camera for probing. In fact, each

35

set of configuration identifies a state of a camera configuration that is desirable for

a guard.

3. Deploying a camera configuration

An admin-user can ask VMS to deploy the defined settings through a GUI. VMS

extracts the camera configuration from VMS data-base and then sends the

extracted data to the third-party camera service provider to apply the new

configuration on the camera.

4. Reporting

VMS is in charge of delivering reports with information on the state of cameras or

third-party camera service providers. Both admin-users and guards are able to ask

for these reports, which are provided by third-party camera service providers.

However, to decrease the number of interactions with third-party camera service

providers, VMS should have the capability of cashing the reported information. In

this way, if VMS receives the same request more than once in a specific period of

time and the reported information is still up to date, VMS can respond without an

additional interaction with the third-party camera service provider.

5. Configuring video service

This use case addresses the required configurations that are required to set a

collection of one or many camera(s) that can provide the full video stream

coverage for guards to monitor different places.

Figure 4.3 shows how the external entities interact with VMS according to the five

use cases described above.

36

Figure 4.3 Interactions with external entities to provide a Video monitoring

application

37

4.4 Non-functional requirements

The VMS non-functional requirements that we have identified in our interviews have also

been addressed in the literature. We identified the following non-functional requirements

for the VMS:

.

1. Ease of configuration for admin-user [10] [2]

VMS should be able to connect to different types of cameras, which each can

support specific communication protocols and standards. However, to facilitate the

configuration of different types of camera, VMS should support a single GUI

interface for admin-users to work with different cameras.

2. Facilitate monitoring[2]

VMS should facilitate monitoring by providing both configuration and location

transparency for guard. For example, the guard can refer to a location that has to

be monitored by using its video service name. For instance, to monitor Hall A,

which is covered by camera 1 and camera 2, guard only needs to send the name of

the location (Hall A). VMS is in charge of finding the address and the

configuration of the required cameras, which either has been set by an admin-user

or already, has a default value in the system.

3. Supporting new types of cameras [13]

VMS has to be able to support different types of camera in different domains.

Thus, VMS has to be extendable with minimum changes, and it also needs to

allow new cameras to be added to the system.

4. Scalability [10], [13], [2], [35]

The security management platform has to be capable of supporting different

numbers of camera. The company VMS as a main part of the security platform is

in charge of supporting a large number (more than 1000) of cameras. To support a

large scale system, VMS has to be able to integrate with the third-party camera

service provider to distribute part of the necessary process.

5. Security and privacy

38

The major security problem of IoT is related to authentication and data integration

[34]. To do the authentication, we need data exchange between authentication

servers and devices. This makes a problem when an application use passive RFID

tags in an IoT-based system, because a passive RFID does not have the capability

of handling many communications with an authentication server. This problem

has not been solved yet [36].

4.5 Conclusion

In this chapter, we identified both functional and non-functional requirements that should

be considered in the design and implementation of a VMS. In order to identify these

requirements, we conducted interviews with the technical staff of a commercial company

(Nedap). We interviewed the technical staff of the research and development department

in order to have a general understanding about both the current and next generation of

VMS. We also had interviews with the software architects and developers of the current

VMS to collect more information of the system.

Furthermore, we reviewed the literature on middleware for IoT-based systems to identify

those requirements that a VMS should be able to support.

In our project, we are going to answer to two of these non-functional requirements: (1)

providing ease of configuration for admin-user; (2) providing ease of monitoring for a

guard who is as an end-user in VMS.

39

Chapter 5 Proposed architecture

In this chapter, first we explain an overview of the Video Monitoring System (VMS).

After that, we explain the required parts of VMS in more detail.

5.1 Overview of the system

In this section, we explain resources of a VMS and provide an overview about its main

parts.

In order to provide ease of configuration and deployment for both guards and admin-

users, VMS provides APIs to facilitate client application‟s interaction with camera

devices. Admin-users can select and configure the required camera devices to monitor a

video service, for example, a specific location without considering the detailed camera

specifications (e.g., supported communication protocols). VMS is also responsible to

provide location transparency for guards and help them to do video monitoring without

knowing the camera device‟s locations.

In a VMS, we have three resources which are accessed by both guards and admin-users

of the system as follows:

1) Camera service: This resource is configured by admin-users to set the sampling

data rate of a camera with respect to its specification.

2) Third-party camera service provider: This resource is provided by third-party

camera service providers and can be configured by admin-users. This resource

manipulates information about the cameras service provider such as, different

reports about the cameras of a specific camera service provider or the available

cameras in a third-party service provider. A third-party camera service provider

manages one or more camera device(s) by applying the camera service

specifications.

3) Video service: This resource refers to one or more camera service(s) which are

used by third-party camera service providers to monitor, for example, a specific

location. This resource is configured by admin-users and can be accessed by

guards. A video service represents are shown in windows on the screen with

several video streaming sub-windows.

Figure 5.1 shows these resources used by a video monitoring application for a

guard. For instance, the guard asks to monitor a shopping area. The admin-user

40

defines the shop monitoring video service and the required configuration for the

camera services in VMS. Then, VMS sends the camera service request to the

considered third-party camera service providers. Finally the third-parties send the

requested video stream to the guard.

Figure 5.1 Example of a video service monitoring.

Figure 5.2 is the overview of the VMS system to show the main components which are

required to interact with the three aforementioned resources.

VMS consists of two main parts: (1) Client Application that receives the end-users

request through a GUI. Then, it sends the request in an appropriate format to third-party

camera service providers. (2) MVMS that consists of three main components to answer

the client application request.

41

Figure 5.2 Abstract view of VMS

We will explain the MVMS components, in the following:

 APIs: We listed the possible operations that a client application can expect from

VMS. We extracted these operation based on the requirements of a company that

uses VMS .

The expected operations from MVMS can be categorized in four main groups of

APIs, namely Configuring, Deploying, Reporting and Monitoring. These APIs are

placed between the client application and third-party camera service providers

application. Thus, these APIs are seen as a software intermediary component that

enables the client applications to interact with different third-parties camera

devices. These API will be elaborated more in section 5.2

 Registry: This component is responsible to store the data about the three resources

in the VMS. Registry provides the required data for APIs (i.e., the configuration

data for a camera) to do the requested operations by the client application.

Furthermore, to have a list of supported operations by the VMS, this component

42

stores the supported operations, their input and output data. we will explain it in

more detail in section 5.3.

 Service proxy: A VMS is responsible to interact with different Third-party camera

service providers. Therefore, a service proxy is required that is composed of

several adaptors to shield the heterogeneity of the camera service providers. Each

adaptor is responsible to make the interaction with a third-party camera service

provider in an acceptable format for both VMS APIs and that third-party camera

service provider. we will explain it in more detail in section 5.3

 As figure 5.2 shows, MVMS communicates with deferent third-party camera service

providers. Each third-party camera service provider is in charge of (1) deploying the

configuration to the camera devices, and (2) sending back a video stream to the

requesting guard application which is out of the scope of this project. In this project, we

only work on the first responsibility of third-party camera service provider.

5.2 APIs

As figure 5.3 shows VMS supports four APIs namely monitoring, configuring, deploying

and reporting. In the following, we will discuss them in more detail:

 The configuring API allows admin-users to save the resource configuration data

in the registry. An admin-user based on the needs of a guard should be able to

change the camera configuration of a video service. Therefore, the repository can

save different configuration presets for each camera service. In this case, an

admin-user can use the configuration presets name that have already saved in the

registry. Thus, there are no needs to redefine all the configuration details.

Furthermore, This API allows admin-users to define the required camera services

in video services.

 The Deploying API handles deploying the requested configuration. Thus, to

perform this API, an admin-user gives the camera service configuration name,

which has already saved in the VMS. Then, VMS finds the related configuration

information that has been saved in them in the registry, and sends them to the

service proxy to send to the consider third-party camera service provider.

 The reporting API allows admin-users or guards to have access to the possible

reports that VMS can provide, for instance, a report about a list of the available

cameras that are available by a specific third-party camera service provider.

 The Monitoring API gets the name of the video service, which a guard would like

to monitor as an input. Then, VMS shows the list of the required cameras service

and their PTZ presets. After that MVMS extracts the required data to interact with

the third-party camera service provider. Finally, the extracted data is sent to the

43

service proxy, which is able to send it to the consider third-party camera service

provider. This API also allows an admin-user to set different PTZ preset for each

camera service, but only one of them can be deployed at the time.

MonitoringConfiguring ReportingDeploying

Abstract
services

Service
Repository

Service Proxy

Registry

Functionalities

. . .

Third party
camera
service

provider 1

Third party
camera
service

provider n

MVMS

Application 1 Application 2

VMS

Admin-user Guard

. . .

Video stream

Video stream

Figure 5.3 Overview of the VMS system including the applications and MVMS

44

5.3 Registry

Registry stores the required data to perform the MVMS APIs. This part is divided into

two sub-parts: (1) resource configuration that contains the required specification to

configure and define the resources that the both end-users would like to interact with (2)

service repository that contains services that are required to perform the APIs. We will

discuss each sub-part in more detail, in the following.

5.3.1 Resource configuration

 Resource configuration is responsible to provide the required data to define and

configure the three resources. Each Video session configuration refers to the required

camera(s) to provide full camera coverage to monitor, for instance, a location. Each

camera configuration defines the required data to configure a camera service to provide a

desirable video service for the guard. The third-party camera service provider can be

configured by admin-user or the third-party camera service provider. These resources will

be explained more in the section 6.2 Resource definitions.

The data about the resources is mostly defined by admin-users. We can have different

types of specifications in order to configure the resources. For instance, a resource like

camera service can be defined on different types of camera devices. However, different

types of camera devices can have their own specifications to be configured. An admin-

user only needs to set some specifications that are required to perform MVMS APIs.

These specifications can be common in most of the cameras devices. Therefore, to

facilitate configuration and definition of resources in VMS, we can extract a structural

model from the required specifications to define camera service resources.

To extract this structural model (as shown in Table 5.1) we reviewed three references: (1)

Pervasive System (PS) group
5
of Twente university research that has proposed a generic

WSN data model to interact with sensors in a WSN (2) The RESTful API that is going to

be used at Nedap to integrate the current video monitoring system with the third-party

camera service providers, (3) The ONVIF
6
group specifications [37] that defines camera

attributes to develop a middleware framework between a client and different IP-based

camera devices.

5
 http://ps.ewi.utwente.nl/

6
 http://www.onvif.org

http://www.onvif.org/Documents/Specifications.aspx

45

Table 5.1. List of the specifications of resources in VMS

46

We made a data model out of these specifications as shown in Figure 5.4 As it shows

each Video service can refer to one or more camera service(s). Also each camera service

can belong to one or more video service(s). Each camera can be supported by only one

camera providers. While, a camera provider can support more than one camera.

Figure 5.4 Data model to define resources in VMS

It should be mentioned that we try to make a generic data model that contains most of the

required specifications that resources should have in different video monitoring systems.

It means, we can have some video monitoring systems that use parts of this data model

based on the end-users‟ purpose. For instance, we do not need to use the battery or

harvesting power specification when the energy consumption is not an important issue in

the system. Thus, to make a data model for a video monitoring system, we can instantiate

parts of this specification.

5.3.2 Services repository

Service repository refers to the sub-functionalities that can be provided by a third-party

camera service provider. Each of the deploying, configuring, reporting and monitoring

APIs is a composition of one or more of these sub-functionalities, which are shown in

Table 5.3:

47

Table 5.3 Sub-functionalities of the APIs: Part 1

48

Table 5.3 Sub-functionalities of the APIs: Part 2

49

5.3 Service proxy

Service proxy is in charge of making query in an appropriate format, which can be

supported by the third-party camera service provider, to interact with the third-parties.

For instance, a VMS can work with two third-party camera service providers that support

different communication protocols (e.g., one of them SOAP-based communication and

the other one supports RESTful). Therefore, Service proxy needs to have different

components to adopt the required data to send to the third-party camera service provider

in an acceptable format that is supported by them.

Furthermore, the service proxy is responsible to change the third-party camera service

providers‟ response in an understandable format for MVMS. In the MVMS the video

streaming data is sent directly to guards and only the data for reporting API is sent

through VMS.

5.4 Conclusion

In this chapter, we defined a general overview of the VMS parts. Generally, we can

summarize VMS in three parts (1) APIs (2) repository that stores the required data to

perform the functionalities (3) service proxy that handles the interaction with third-parties

camera service providers.

50

51

Chapter 6 Implementation
In this chapter, we explain the implementation of our prototype. Section 5.1 explains the

deployment architecture of internal and external components of VMS. Section 5.2

explains the client application and the way that the APIs have been used in the client

applications. Section 5.3 shows the database schema of the Registry. Finally, section 6.4,

explains the implementation of service proxy complement.

6.1 Deployment
Figure 6.1 shows how internal and external components of a VMS have been deployed

and the communication protocols which are used by them. As the Figure shows, client

applications send a RESTful request to the server that MVMS is hosted on. Then, MVMS

interacts through the communication protocols that can be used in either LAN or Internet

to interact with third-party service providers. Finally, third-party can send the required

information to answer the requesting query to the client application or MVMS.

End-user Admin-user

Client
Application

Client
Application

Internet

MVMS

Nedap Server

Restful request Restful request

Internet

Restful request

Third-party camera
service provider

Application 1

Third-party service
 provider 1 Server

Third-party camera
service provider

Application 2

Third-party service
 provider 2 Server

Local network protocols

VMS

Figure 6.1 the deployment architecture

52

A Camera service provider is located inside Nedap Company that deploys the VMS. The

third-party camera service provider uses some LAN protocol such as AMQP (Advance

message queuing protocols), which seems more light weight than HTTP, to interact with

MVMS.

6.2 Client Application
We used web service to implement the interaction between the client applications and

MVMS. Web service can be implemented based on two architectures: (1) SOAP-based

and (2) RESTful. we decided to use REST for two reasons: (1) VMS does not have

complex operations and (2) REST is easy to use for clients [32]

The client application supports two access levels, namely (1) end-user and (2) admin-

user. In our prototype the end-user client application uses monitoring API and also move

the camera in the form of changing its PTZ preset. The admin-user client application uses

configuring and deploying APIs to configure the cameras for endd-users. We explain two

types of client application as follows:

End-user client application:

As the monitoring-form (see Figure 6.2) shows, first an end-user enters a name of a video

service. MVMS by receiving the monitoring request shows the list of the required

cameras of the requested video service to the end-user. Also, MVMS extracts the name of

the required third-party camera service providers and ask them to send the video stream

to the requested user. Beside this, if end-user needs to change the one of the cameras

PTZ, he/she can see the list of available PTZ preset for the camera and then apply one of

the listed PTZ preset on them. By receiving the new PTZ preset MVMS updates the

registry information and informs the considered third-party camera service provider about

the changes.

Figure 6.2 End-user monitoring form

53

Admin-user client application:

In our prototype, an admin-user client application provides access to Configuring and

Deploying APIs through admin-form. In order to set and apply the configurations of

cameras and video services, admin user has the following forms:

 Set PTZ preset form: Admin-user defines the rates for Pan, Tilt and Zoom and

save it in the system through this form as a PTZ preset. Later this PTZ preset is

used by end-user or admin-user.

 Set camera configuration form: Admin-user defines one or more configuration

attributes for a camera and records it in the system through this form. Each

camera works based on only one configuration that has been deployed in the

system. The capability of saving more than one configuration in the system let

admin-user to make different sets of configuration attributes over the most

requested configurations. In this case, if the configuration set has already saved in

the system the admin-user does not need to redefine it.

 Deploy camera configuration form: An admin-user sends one of the required

camera configuration, which has been saved in the MVMS, to the responsible

third-party camera service provider through this form.

 Set video service configuration form: Each video service refers to one or more

camera(s). Through this form, we make a group of cameras that can provide a full

video stream to satisfy the end-user monitoring request.

Table 6.1 show more detail about the client application‟s forms

54

Table 6.1 the summary of our prototype forms

55

6.3 Registry

Registry stores the data for two purposes (1) for service repository and (2) to record

resource configuration information. Since, implementing the resource configuration part

can show if the system meets the goal of the system, providing ease of configuration and

deployment for non-expert users. We only implement the resource configuration part of

the registry.

To provide the required information for the APIs, MVMS needs to have the resource

configuration component that records the resources information in the database. As

discussed in chapter 5, VMS has three resources namely Video service, Camera service

and Third-party camera service provider, which is recorded in three separate tables. Each

camera service can have one or more configuration(s) and PTZpreset(s), which can be

recorded in two different tables. Since, it is possible that only the PTZ preset in a camera

configuration be changed by an admin-user or end-user. We made a separate table to save

the PTZ preset information. Furthermore, since a camera can be assigned to more than

one video service and a video service can refers to more than one camera service, we

have an intermediary table between Video service and Camera service namely serviceTB

table.

Our assumption is the third-party-camera-service-providerTB and cameraTB are

initialized by the third-party camera service providers. We try to make the required logics

of the VMS by using Primary Key (PK) and Foreign Key (FK) relation between the

tables. For instance, admin-user can save different PTZ preset in the system that be used

in the camera configuration. Since each camera configuration can have only one PTZ

preset the PTZ-preset-name is as the foreign key in camera-configuration-TB.

56

Figure 6.3 Data base schema

57

6.4 Service proxy

In order to provide the required interaction between MVMS and the third party camera

service providers in appropriate formats, we need to call the service proxy component for

three operations in the system (1) to deploy the configuration, (2) modify the PTZ preset

value by end-user or admin-user, and (3) to answer the monitoring request by the end-

user. Figure 6.4 shows how these operations implemented in our prototype.

58

Figure 6.4 the relation between different components of VMS

59

In our prototype, to call the service-proxy we use a method that has the following

signature:

Service_proxy(String Thirdparty_name, String Operation_type, String opetaion_input_data);

Its parameters are explained as follows:

 Thirdparty_name refers to the name of the third party that is responsible to provide

the information to answer the requested query.

 Operation_type can get one of these three values: (1) Deploy, (2) Monitor (3)

Apply _PTZ. This parameter indicates to the service-proxy that which of the

three fore mentioned operations needs to be called.

 opetaion_input_data has a string value that is coded that the required information

to do the one of the requested operations operation in the xml format.

After service proxy received the opetaion_input_data, it has controller method to extract

the required information form opetaion_input_data value which is shown in Code 6.1. It

has a ParseXMLString(element,xmldata) method that extracts the data about the element

from the xmldata. The out-put of this method is a string in XML format that contains the

required information about the element

Void controller(){
cam-name= ParseXMLString (cam_name, opetaion_input_data);

 switch (Operation type) {
 case 1: Operation type = "Deploy";
 config_data= ParseXMLString(config, opetaion_input_data);
 Deploy(Third_party-name, cam-name, config_data);
 break;
 case 2: Operation type = "Monitor";
 Guard_IP_address= ParseXMLString(IP, opetaion_input_data);
 Monitor(Third_party-name, cam_name, Guard_IP_address);
 break;
 case 3: Operation type = "ApplyPTZ";
` PTZ_preset= ParseXMLString(PTZ, opetaion_input_data);
 ApplyPTZ(Third_party-name, cam_name, PTZ_preset);
 break;
}
Code 6.1 extracting the required information based on the requested operation

60

After extracting the required information to do the operations, we have three methods

to call specific third-party operation . Each method make an appropriate format of data

based on the supported data by the third-party and makes the request over the third-

party (see code 6.2).

Deploy(Third_party-name, cam-name, config_data){
 If(Third_party-name= “Nedap”)
 Nedap_deploy(cam-name, config_data);
 Else
 TP_deploy(cam-name, config_data);
}

Monitor(Third_party-name, cam_name, Guard_IP_address){

If(Third_party-name= “Nedap”)
 Nedap_monitor (cam_name, Guard_IP_address);
 Else
 TP_ monitor (cam_name, Guard_IP_address);

 }

ApplyPTZ (Third_party-name, cam_name, PTZ_preset){
If(Third_party-name= “Nedap”)
 Nedap_applyPTZ(cam_name, Guard_IP_address);
 Else
 TP_applyPTZ(cam_name, Guard_IP_address);

 }

6.5 Conclusion

In this chapter, we explained one of the possible deployment of VMS. Furthermore, We

explained the implementation of the discussed part in chapter 5 (Design). That consist of

the client application and the used APIs, registry and service-proxy

61

Chapter 7 Preliminary Evaluation

As discussed in the previous chapter, we have developed a VMS prototype as a proof of

concepts. Our goal is to develop a middleware for a VMS, to facilitate configuration and

deployment of camera devices for non-expert end-users.

ISO 9241-11 defines usability as “Extent to which a product can be used by specified

users to achieve specified goals with effectiveness, efficiency and satisfaction in a specific

context of use”

Also ISO standard defines satisfaction as “the extent to which users are free from

discomfort, and their attitude toward the use of the product”[38].

In our case, based on our goal, we aim to help non-expert end-users configure camera

devices and deploy their configurations. Thus, we can use the ISO 9241-11 standard

guidelines to evaluate our prototype whether it provides the satisfaction aspect of the

usability definition.

Generally speaking, usability evaluation methods should consider both objective and

subjective aspects. Objective evaluation is related to measure the system performance for

instance, by logging the response time in a system. Subjective evaluation measures the

participant‟s attitude or opinion based on their perception of usability. The standard

guidelines suggest to measure satisfaction, which is subjective evaluation, through

interview with the system end-users. [39]

 To evaluate our prototype, we used a subjective evaluation process. It was inspired by

evaluation studies done by other researchers ([39], [40]) in research settings like ours. We

made questionnaire and performed interview with the practitioners, who are developing

VMS in the company (Nedap). In this chapter, we explain our evaluation process and its

result.

7.1 Evaluation process

In this section, we explain the interview place and the interviewees. In addition, we

explain our idea behind making the questionnaire‟s questions.

We performed our interview in a commercial company (Nedap), which develops VMS.

VMS provides video stream information to monitor different places, such as airport,

companies.

We asked three of the company practitioners who are project manager, developer and

architecture of a VMS developed by Nedap. The requirements of VMS have been

62

identified by performing several interviews with the customers of the company. Then, the

VMS developers work on VMS based on the identified requirements. Therefore, the

VMS developers know about the end-user requirements in the system and they can be

considered as representative of both admin-user and end-users to answer our

questionnaire.

We wanted to gather interviewees feedbacks as much as possible without limiting them to

our questions, therefore we used open-end questionnaire [41]. Our questionnaire has five

open-end questions; the first three questions are about the general opinion of the

interviewees to compare the current version of VMS with our prototype from non-expert

end-users perspectives. The last two questions emphasize more on our usability goal and

to what extent our prototype can provide it.

As Figure 7.1 shows, in the last two questions, we asked about the required time to

configure camera devices using our prototype. The reason is, our prototype has capability

of saving more than one configuration presets for each camera. Each configuration preset

consists of a set of required attributes to configure a camera. This capability can save

admin-user time to changing the camera configuration. Because it prevents admin-user to

redefine the camera configuration preset which is already saved in the VMS. In addition,,

we directly ask the interviewees about the ease of configuration to evaluate our usability

goal. We will explain in more details about the idea behind each question in section 7.2.

1. Which tasks can you do with the system now that you could not do before?

2. Have you ever been pleasantly surprised when you were using the system? A

situation that you did not expect, if yes please describe the situation.

3. Does using the system make camera configuration easier ?In which way?

4. Does using the system save your time to apply new camera configuration

changes? in which way?

5. Are there things that are more difficult now than before? In which task and in

which way?

Figure 7.1: list of the questions identified in the questionnaire.

We interviewed with the practitioners separately for two reasons: (1) the interviewees are

as the representative of VMS end-user and not the actual end-users. Thus, more

63

discussion time was required to interpret their evaluation from the end-user perspective;

(2) since our interviewees play different roles in the development process of a VMS,

performing separate interviews gave us the opportunity to investigate the future

possibilities to improve the system.

We performed all of our interviews in the same way. First, we explained the goal of our

interview to the interviewees. Then, to be sure the candidates have sufficient knowledge

about the current VMS, we discussed the current VMS system. After that, we explained

and presented our prototype. Finally, we asked them to fill in the questionnaire form. For

clarity, we present the form in Appendix A (page 81). The data collected by means of the

form is presented in the Appendix B (page 82)

7.2 The experiment and its results

In this section, we explain the results of our interviews individually for each

question. After analyzing the interview data, we engaged another practitioner, who never

worked with the VMS, to interpret our questionnaire results.

In the following, we mention our goal behind the questions and the interviewee‟s results

for each question:

 Question1: Which tasks can you do with the system now that you could not do

before?

The goal of this question is to find the new functionalities that our VMS provides

for end-users. In this question, we do not mention our goal in the question

directly, so that we can to investigate the interviewees feeling about the

functionalities that are added to our VMS.

Interviewee 1: Currently, Nedap has a VMS to manage its own cameras. To

extend the company VMS to support other type of cameras, we want to integrate

the company VMS with other third-party camera service providers. Our first

interviewee believes that our VMS add a uniform way to communicate with the

old camera devices for end-users. These cameras can be managed by different

third-party camera service providers or Nedap VMS.

Also, in our VMS, we have designed two access levels roles, admin-user and

guard. The interviewee mentioned that the idea of having admin-user is useful.

Admin-user is an end-user who is able to ask third-party camera service providers

64

to apply camera configurations. Old VMS does not support applying camera

configurations by end-users.

Interviewee 2: He has the same opinion as the first one. He emphasized that our

VMS provides a uniform way to handle the company cameras and the third-party

cameras.

Interviewee 3: The third interviewee also mentioned the same points.

 Question 2: Have you ever been pleasantly surprised when you were using the

system? A situation that you did not expect, if yes please describe the situation.

The goal of this question is to have more specific examples about the new

functionalities that our VMS provides for end-users.

Interviewee 1: He believes that it is pleasing to have a cleared and practical way

to configure the cameras. In this way, end-users do not need to think differently to

apply configuration for each type of cameras.

Interviewee 2: He believes, since he is not an end-user of this system, answering

to this question is difficult for him.

Interviewee 3: He believes that the end-user experience largely depends on user

interface. Since our VMS developed for testing purpose to show how the system

works, it is difficult for him to answer to this question

 Question 3: Does using the system make camera configuration easier? In which

way?

To facilitate camera configuration in our VMS, a admin-user can save more than

one camera configuration setting in the system for each camera. In this way, if the

admin-user wants to change a camera configuration to a predefined configuration

in the system, he/she doesn‟t need to redefine the camera configuration. This

feature can save camera configuration time. The goal of this question was to ask

indirectly about this feature. The interesting point was our interviewee referred to

other features.

65

Interviewee 1: He believes that we need more generic action to configure different

cameras in our VMS. Thus, end-user needs to spend less time to learn how to

work with the system.

Interviewee 2: He believes that the user interface has the main effect on saving

time for end-users. Since the user interface of our prototype is for testing purpose,

he cannot answer to this question.

Interviewee 3: He thinks our VMS can save time for end-users. However, testing

the system with actual end-users is required to have more accurate answer.

 Question 4: Does using the system save your time to apply new camera

configuration changes? in which way?

The goal of this question is to ask directly about our main goal in this project.

Therefore, we explicitly asked about the ease of camera configurations that our

VMS provides for end-user.

Interviewee 1: He believes that our VMS provides ease of camera configuration

for admin-user. The reason is, since all of the cameras are configured in an

uniform way, an end-user does not need to know the camera configuration of

different camera types.

Interviewee 2: He mentioned the same point as the first interviewee.

Interviewee 3: He believes that if our VMS is integrated with third-party camera

service providers, this can make the configuration easier.

 Question 5: Are there things that are more difficult now than before? In which

task and in which way?

The goal of this question is to find whether our VMS causes any difficulties for

end-users or not.

Interviewee 1: He did not mention any difficulties.

Interviewee 2: He believes that configuring video service in the early stage of the

camera configuration can cause more complex model in comparison with old

VMS.

66

Interviewee 3: He believes in our system, end-user might have difficulty to know

the available cameras. He mentioned that we should have a mechanism to update

the list of the available cameras and inform end-users about them. For instance, a

mechanism can be broadcasting a message periodically to the third-parties to get

the list of their available cameras.

Before making the conclusion we asked someone who has clear mind about the VMS,

to interpret our questionnaires‟ results. Since, he has independent judgments to

interpret our system, his interpretation help us to provide more reliability to evaluate

our system. His interpretation is as follows:

“The surveyed software can provide easier deployment and configuration of cameras

because it provides an uniform way to accomplish these tasks for several camera types.

This can make these tasks less time consuming and less challenging for non-expert users.

A disadvantage is that the model is more complex meaning that grouping of cameras

needs to be done in an earlier stage of configuration. Also, the user interface can be

improved. Because in the prototype end-users are required to know camera names in

advance. These need to be entered by the user itself. A better way would be to present the

possible options in a drop-down menu.”

7.3 Discussion:

In this section, we explain our conclusion for each question and how our interviewees‟

answers can be related to our design.

Based on the answers to first question, we conclude that in general, our VMS can provide

ease of communication with the third-party camera service providers and also ease of

camera configurations for end-users.

Our interviewees provide this answer, because our VMS has a service proxy component.

This component is responsible to make the requested query from the third-party camera

service providers in an appropriate format, which are supported by them. Therefore, this

component facilitates communication with third-party camera service providers.

Based on the answers to the second question, we should consider two further tasks to

have more precise evaluation: (1) improving the user interface of our prototype (2)

interviewing with the actual end-users instead of their representatives.

Our interviewees provide this answer, because the client applications for our prototype

are for testing purpose.

67

Based on the answers to third question, we are not sure if having the capability of saving

more than one configuration for a camera can save the camera configuration time. To

have more precise answer to this question, we should test the prototype with actual end-

users.

The interviews answer to this question was surprising for us. Because, we expected they

mention to the configuration capability that our system supports, while they identified

other features.

Based on the answers to the fourth question, we conclude if an end-user needs to interact

with different type of cameras, our VMS can facilitate the configuration.

Our interviewees provide this answer, because our VMS has two components, namely (1)

Configuring (2) Deploying, to provide ease of configuration for admin-users.

Based on the answers to the fifth question, we should add a mechanism to update the

available cameras for the end-user. Moreover, we found that although defining video

service can facilitate the interaction of a guard with the system, it can cause some

difficulties for admin-users. The reason is an admin-user needs to set the required

cameras for a video service in the configuration phase.

To make the configuration easier for admin-user, VMS can use some intelligent

mechanisms to suggest admin-user the list of the required cameras to monitor an area.

We will explain it more in the future work (Section 8.2)

Each video service provides full video stream coverage to monitor an area. The required

cameras for each video stream usually are fixed. So, instead of redefining the address of

the cameras to monitor an area we can define Video service. In this case, admin-user

defines the required camera to monitor an area once as a video service in the system, later

guards can use the video service name in our VMS, instead of addressing the cameras.

7.4 Validity Threats

In this section we discuss about the expertise and number of the interviewees to see the

possible validity threats in our evaluation.

We could interview the VMS researchers, who do research on the next generation of the

VMS in the company, for evaluating our VMS. Since the researchers have not worked on

the current VMS in the company, they would probably have difficulties to answer our

questionnaire from end-user perspective. We interviewed with the practitioners who

know about the required functionalities for VMS end- users. If we would have

68

interviewed with the VMS researchers, they could not have been as the representative of

the VMS end-users as the practitioners were.

If we would have interviewed with more people with the same profiles as our

interviewees, we would not have expected to obtain different responses. The reason is, all

of our interviewees have provided very similar answer to our questionnaire. Therefore

interview with three practitioners is sufficient. [42]

If we would have performed perform the interview with the actual end-users, we could

have got more precise answers for some of our question. An example is our second

question in which, we are looking for the new functionalities that our VMS provides for

end-users. Since our interviewees have not worked as an end-user with our prototype for

a long time, they have difficulties to answer this question.

7.5 Conclusion

In this chapter, we explained the way that we performed our questionnaire. To evaluate

the result of our questionnaires, first we explained the interviews answer for each

question. To have more reliable evaluation, after reading the questionnaire‟s answers,

we discussed with the interviewees again about the unclear parts. To have a more reliable

evaluation, we asked someone who has an independent judgment about the result of our

questionnaires‟ answers to interpret the results.

According to the result of our interview, we can conclude that the designed system can

satisfy the goal of our project. However, we should work more on the user interface to

have more accurate result. Improving the user interface is helpful to provide easy access

to the implemented features and to facilitate camera configuration. Since our evaluation

is based on the end-user perspective, it would be better that we test it in a real scenario

and with actual end-users.

69

Chapter 8 Conclusion

This thesis proposed architecture for Video Monitoring System (VMS). The aim of our

research was to develop a middleware for a VMS, to facilitate configuration and

deployment of camera devices for non-expert end-users.

In the requirement election phase of our approach, we interviewed researchers and

developers of a commercial company, which develops VMS. Since VMS can be

considered as an IoT-based system, we also reviewed literatures about IoT-based system

to find the challenges in this area as part of the requirement election phase.

 Based on the identified requirements, we conclude that making a generic data model for

the configuration of the cameras would help end-users to have a uniform way to

configure different types of cameras. This feature facilitates working with different types

of cameras for non-expert end-users. Accordingly, we have developed our VMS

prototype which implements a generic data model for cameras. The prototype has been

evaluated in the commercial company.

In this chapter, we discuss the lessons which we learned based on our research questions

and objective. Furthermore, we discuss some of the challenges which we have faced

during our research and can have the potential to be considered as the future research

topics.

8.1 Contributions

The Goal of our VMS has been evaluated with respect to ISO 9241-11 [38] that defines the

usability satisfaction and also provides some guideline to evaluate it.

In Section 1.3, we listed four research questions. In this section, we described how the

research questions have been addressed in this thesis.

RQ1. What is the role of middleware in an IoT-based system?

In Chapter 2, we reviewed some of the challenges to implement an IoT-based system.

One of them is to deal with the heterogeneity of devices, which is the responsibility of an

IoT-base middleware.

 An IoT-base middleware facilitates working with heterogeneous types of data messages

and communication protocols, which are supported by different devices. We summarize

dealing with the device heterogeneity in two phases: (1) data processing phase that

extracts information from sampled data message, and (2) data gathering phase that

manages data sampling from devices with different communication protocols.

70

RQ2. What are the main functional components of a middleware in an IoT- based

system?

In Chapter 2, we discussed the study on the existing middleware in IoT-based systems,

which has been done by Bandyopadhyay, S. et. al [1]. To manage middleware

interactions with a variety of devices, Bandyopadhyay S. et. al define four functional

components, namely (1) interface protocols, (2) device abstraction, (3) central control,

context detection & management, and (4) application abstraction.

To find out more about the role of these functional components, we discussed four IoT-

based middleware in Chapter 3.

RQ3. How to facilitate the interaction of non-expert users with different types of devices?

We limited our research scope to camera devices. Thus, in chapter 4, we discussed the

VMS and its functional and non-functional requirements. We gathered these

requirements based on interviewing with the practitioners in the company and reviewing

some of the related literatures.

Based on the identified requirements, we made an data model abstraction for

configuration attributes of different camera devices. This was explained in chapter 5.

Using this data model, our middleware can provide a high level homogenous view of the

cameras. This homogeneity hides the detailed information to interact with different types

of cameras for end-users. Therefore, it facilitates the interaction of non-expert users with

the camera devices.

RQ4. How to verify ease of this interaction with different types of devices?

To validate our VMS, first we made a VMS prototype, which was explained in chapter 6.

After that, in Chapter 7, we evaluate our prototype using questionnaires method and

performing interviews with practitioners of a commercial company. We used this method

because our goal can be interpreted as satisfaction in the usability definition of ISO

9241-11 standard[38]. Based on this standard guidelines, we can use questionnaire

method to evaluate our prototype [39].

8.2 Future Research

In this section, based on the challenges that we have faced in our research, we discuss the

possible research topics as follows:

 Other field test

We made a data model based on the required camera configuration attributes. This data

model provides a uniform way for end-users to work with different types of cameras.

IoT-based system should be able to deal with a large variety of sensors and actuators.

71

Extending our data model to support more sensors and actuators is considered as a future

research.

 VMS works in an intelligent way

Camera configuration and interaction with cameras can be facilitated by applying some

intelligent mechanisms as follows:

 Applying an intelligent mechanism to suggest more efficient cameras to help

admin-user to make a video service. The efficiency can be defined based on the

features that can be supported by the video monitoring system or can improve its

performance. For instance, if storing video stream on the camera is supported by a

VMS, in case of having two cameras with the same video coverage; the intelligent

VMS should be able to suggest admin-user for the camera that has more available

memory to record the video stream. Another example can be using some

intelligent mechanism based on the mathematic algorithms to provide full video

coverage with the minimum number of used cameras. This can improve the VMS

performance.

 Another intelligent mechanism is to support an automatic notification event for

end-user or a security reaction in case of violating a security rule in the

monitoring area. For instance, if a motion detector sensor in a place be fired the

VMS be able to start recording video stream from the appropriate video service

that monitor the reported location or send the video stream to a responsible user in

the system.

 Evaluating the system in run time

We evaluated our prototype based on providing ease of configuration and deployment

from end-user perspective, so we tested our prototype at deployment time.

As a future work, we can test the VMS at run time to check the performance of the

system from third-party camera service provider and developer of the system

perspectives. In that case, we should add two parts to the current VMS prototype as

follows:

1) In our prototype, we assume that cameraTB and camera-service-providerTB

tables have been initialized by the third-party camera service providers. In the

future, we should add an interface (i.e. a RESTful interface) to get information

from the third-party camera service providers to initialize and update these two

tables.

2) Our prototype does not deal with receiving the video stream in the client

application from the third-party camera service provider. Because, it is the

72

responsibility of the third-party camera service provider to manage sending the

video stream. Thus, by sending the request to the consider third-party camera

service provider we assume the video service will be receive in the client

application. As the future work we can test receiving the video service in the

client application as well.

73

References

[1] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “Role of Middleware for Internet
Of Things,” International Journal of Computer Science & Engineering Survey (IJCSES), vol.
2, no. 3, pp. 94–105, 2011.

[2] M. A. Chaqfeh, N. Mohamed, P. O. Box, and A. Ain, “Challenges in Middleware Solutions
for the Internet of Things,” International conference on Collaboration Technologies and
Systems (CTS), no. IEEE, pp. 21–26, 2012.

[3] G. Mulligan, “An Interaction Independence Middleware Framework,” Virginia Polytechnic
Institute and State University, 2009.

[4] G. R. A. Schreiber, Romolo Camplani, Marco Fortunato, Marco Marelli, “Design of PerLa,
a Declarative Language and a Middleware Architecture for Pervasive Systems,”
Politecnici di milano, 2010.

[5] F. Schreiber, M. Camplani, Romolo Fortunato, M. Marelli, and G. Rota, “Perla: A language
and middleware architecture for data management and integration in pervasive
information systems,” Software Engineering, IEEE Transactions on, vol. 38, pp. 478–496,
2012.

[6] K. Henricksen, J. Indulska, and S. McFadden, Ted Balasubramaniam, “Middleware for
Distributed Context-Aware Systems,” in On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE, R. Meersman and Z. Tari, Eds. Springer Berlin
Heidelberg, 2005, pp. 846–863.

[7] S. R. R. Hevner, Salvatore T. March, Jinsoo Park, “Design Science in Information Systems
Research,” MIS Quarterly 28(1), pp. 75–105, 2004.

[8] E. Guinard, Dominique and Trifa, Vlad and Mattern, Friedemann and Wilde, “5 From the
Internet of Things to the Web of Things : Resource Oriented Architecture and Best
Practices,” in Architecting the Internet of Things, F. Uckelmann, Dieter and Harrison,
Mark and Michahelles, Ed. Springer Berlin Heidelberg, 2011, pp. 97–129.

[9] J. Sen Debasis Bandyopadhyay, “Internet of Things - Applications and Challenges in
Technology and Standardization,” Wireless Personal Communications, vol. 58, no. 1, pp.
49–69, 2011.

[10] Commission staff working document, “Accompanying document to the communication
from the commission to the European parliament, the council, the European economic
and social committee and 2 the committee of the region’s future networks and the
internet early,” p. 18, 2008.

[11] ITU-T Study Group, “New ITU standards define the Internet of Things and provide the
blueprints for its development,” ITU, 2012. [Online]. Available: http://www.itu.int/ITU-

74

T/newslog/New+ITU+Standards+Define+The+Internet+Of+Things+And+Provide+The+Blu
eprints+For+Its+Development.aspx.

[12] A. Bassi, “Introduction (IoT-A),” IoT-A, 2013. [Online]. Available: http://www.iot-
a.eu/public.

[13] T. Teixeira, S. Hachem, and N. Georgantas, “Service Oriented Middleware for the Internet
of Things: A Perspective),” in Towards a Service-Based Internet, vol. 257178, no. 257178,
J. Abramowicz, Witold and Llorente, IgnacioM. and Surridge, Mike and Zisman, Andrea
and Vayssière, Ed. Springer Berlin Heidelberg, 2011, pp. 220–229.

[14] H. van der Veer and A. Wiles, “Achieving Technical Interoperability the ETSI Approach,”
ETSI White Paper, no. European Telecommunications Standards Institute, 2006.

[15] H. Haas, W3c working group, A. Brown, and Microsoft, “Web Services Glossary,” w3c,
2004. [Online]. Available: http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/.

[16] D. Driscoll and A. Mensch, “Devices profile for web services version 1.1,” OASIS, Mai,
2009.

[17] M. Weiser, R. Gold, and J. S. Brown, “The origins of ubiquitous computing research at
PARC in the late 1980s,” IBM systems journal, vol. 38, pp. 693–696, 1999.

[18] A. Malatras, A. H. Asgari, and T. Baugé, “Web enabled wireless sensor networks for
facilities management,” Systems Journal, IEEE, vol. 2, no. 4, pp. 500–512, 2008.

[19] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An acquisitional
query processing system for sensor networks,” ACM Transactions on Database Systems
(TODS), vol. 30, no. ACM, pp. 122–173, 2005.

[20] W3c working group, “PervasiveComputing,” W3C, 2004. [Online]. Available:
http://www.w3.org/wiki/PervasiveComputing.

[21] F. Mazzenga and M. Vari, “Indoor localization techniques based on active and passive
devices,” RFIDays, 2008.

[22] J. Soldatos, N. Kefalakis, and N. Leontiadis, “ASPIRE Programmable Engine (APE),” ASPIRE
Consortium, vol. 3, 2011.

[23] A. Salehi, M. Riahi, S. Michel, and K. Aberer, “GSN, middleware for stream world,” in 10th
international conference on mobile data management (MDM 2009), May, 2009, pp. 18–
20.

[24] P. Eisenhauer, Markus Rosengren and P. Antolin, Hydra: A development platform for
integrating wireless devices and sensors into ambient intelligence systems. Springer, 2010,
pp. 367–373.

75

[25] C. Hartung, R. Han, C. Seielstad, and S. Holbrook, Proceedings of the 4th international
conference on Mobile systems, applications and services. ACM, 2006, pp. 28–41.

[26] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, Wireless sensor
networks for habitat monitoring. ACM, 2002, pp. 88–97.

[27] J. Werner-Allen, Geoffrey Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring volcanic
eruptions with a wireless sensor network,” in Wireless Sensor Networks, 2005.
Proceeedings of the Second European Workshop on, IEEE, 2005, pp. 108–120.

[28] P. Jo and D. Garlan, “Aura: an architectural framework for user mobility in ubiquitous
computing environments,” Kluwer, 2002.

[29] J. Domingues, A. Damaso, R. Nascimento, and N. Rosa, “An Energy-Aware Middleware for
Integrating Wireless Sensor Networks and the Internet,” International Journal of
Distributed Sensor Networks, vol. 2011, pp. 1–19, 2011.

[30] C. S. M. Villa, D. Rotondi, M. Comolli, (TXT), A. M. H. (Siemens) H.–P. Huth, C. K. (City), H.
T. (inIT), and J. C. (EMIC), “WP 1 – PLUG&WORK IOT REQUIREMENT ASSESSMENT AND
ARCHITECTURE,” 2010.

[31] D. Yazar and A. Dunkels, “Efficient application integration in IP-based sensor networks,”
in Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings, Berkeley, California: ACM, 2009, pp. 43–48.

[32] D. Guinard, I. Ion, and S. Mayer, “In Search of an Internet of Things Service Architecture :
REST or WS- *? A Developers ’ Perspective,” in Mobile and Ubiquitous Systems:
Computing, Networking, and Services, Springer, 2012, pp. 326–337.

[33] Z. Song, A. C. Alvaro, and R. Masuoka, “Semantic Middleware for the Internet of Things,”
2010.

[34] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer Networks,
vol. 54, no. elsevier, pp. 2787–2805, 2010.

[35] K. Paridel, E. Bainomugisha, Y. Vanrompay, Y. Berbers, and W. . Meuter, “Middleware for
the internet of things, design goals and challenges,” CAMPUS 2010, vol. 28, no. Electronic
Communications of the EASST, pp. 1–7, 2010.

[36] Y. Liang, X. Zhou, Z. Yu, H. Wang, and B. Guo, “A Context-Aware Resource Management
Framework for Smart Homes,” Ubiquitous Information Technologies and Applications
(CUTE), 2010 Proceedings of the 5th International Conference on, no. IEEE, pp. 1–8, 2010.

[37] ONVIF, “Specifications,” ONVIF, 2013. [Online]. Available:
http://www.onvif.org/Documents/Specifications.aspx.

76

[38] I. 9241-11, “ISO. Ergonomic requirements for office work with visual display terminals
(VDTs) -- Part 11: Guidance on usability,” 1998. .

[39] Sh.zarghami, “Architectural support for dynamic homecare service provisioning,” 2013.

[40] Mohammad Zarifi Eslami, “Service Tailoring: A Method and Tool for User-centric Creation
of Integrated IT-based Homecare Services to Support Independent Living of Elderly,”
Twente, 2013.

[41] A. H. Maya Daneva, Luigi Buglione, “Software Architects’ Experiences of Quality
Requirements: What We Know and What We Do Not Know?,” Proceedings of REFSQ, pp.
1–17, 2013.

[42] R. S. Peter B. Seddon, “Towards the improved treatment of generalization of knowledge
claims in IS research: drawing general conclusions from samples,” EJIS 21(1), pp. 6–21,
2012.

77

Appendix A: Questionnaire sample

Ease of configuration and deployment for non-expert end-user survey of the VMS

Please provide your opinions on the system by answering the following questions. You can also

comments on each question if you think the question is not applicable or complete enough.

1. Which tasks can you do with the system now that you could not do before?

 Answer:

 Comment on the answer (optional):

2. Have you ever been pleasantly surprised when you were using the system? A situation

that you did not expect, if yes please describe the situation.

 Answer:

 Comment on the answer (optional):

3. Does using the system save your time? In which task (s) and in which way?

 Answer:

 Comment on the answer (optional):

4. Does using the system make camera configuration easier?

 Answer:

 Comment on the answer (optional):

5. Are there things that are more difficult now than before? In which task and in which

way?

 Answer:

78

 Comment on the answer (optional):

79

Appendix B: Questionnaire Results

80

81

